Scientists Reexamine Why Zebra Stripes Mysteriously Repel Flies

For the current study, Tombak, then a PhD candidate at Princeton, and her team wanted to test stripe width to see if narrower ones might be even more repulsive to flies—a potential evolutionary advantage that would explain the difference between zebra species. They also restricted their experiment to close-range encounters to rule out the theory that the repulsion required an illusion that could only happen at a distance. Hence the plexiglass box.

An undergraduate from the lab, Lily Reisinger, built the box and set up the experiment. For each trial, the team hung two pelts with clothespins, unleashed the flies, let them circle for a minute, and then counted how many landed on each pelt. First, they tested an impala pelt vs. one from a plains zebra, which has wide stripes. Then the impala vs. a Grevy’s zebra, which has narrower stripes. Finally, they pitted the skins from the two

The Geological Fluke That’s Protecting Sea Life in the Galapagos

This story originally appeared in Hakai Magazine and is part of the Climate Desk collaboration.

Pushed by climate change, almost every part of the ocean is heating up. But off the west coast of the Galapagos Islands, there is a patch of cold, nutrient-rich water. This prosperous patch feeds phytoplankton and breathes life into the archipelago.

“The cool water sustains populations of penguins, marine iguanas, sea lions, fur seals, and cetaceans that would not be able to stay on the equator year round,” says Judith Denkinger, a marine ecologist at the Universidad San Francisco de Quito in Ecuador.

Over the past four decades, this cold patch has cooled by roughly half a degree. Its persistence has scientists wondering how long it will hold. The Galapagos Islands are already famed for their biodiversity. Could it be that the water offshore will become a refuge for marine animals seeking cold water in

The High-Temperature Superconductivity Mystery Is Finally Solved

When electrons couple up, further quantum trickery makes superconductivity unavoidable. Normally, electrons can’t overlap, but Cooper pairs follow a different quantum mechanical rule; they act like particles of light, any number of which can pile onto the head of a pin. Many Cooper pairs come together and merge into a single quantum mechanical state, a “superfluid,” that becomes oblivious to the atoms it passes between.

BCS theory also explained why mercury and most other metallic elements superconduct when cooled close to absolute zero but stop doing so above a few kelvins. Atomic ripples make for the feeblest of glues. Turn up the heat, and it jiggles atoms and washes out the lattice vibrations.

Then in 1986, IBM researchers Georg Bednorz and Alex Müller stumbled onto a stronger electron glue in cuprates: crystals consisting of sheets of copper and oxygen interspersed between layers of other elements. After they observed a cuprate

‘Gold Hydrogen’ Is an Untapped Resource in Depleted Oil Wells

Capturing or otherwise neutralizing the CO2 must be done safely, says Stephen Wallace, who runs a microbiology lab at the University of Edinburgh. But he adds that Cemvita Factory’s idea of harnessing microbes for hydrogen production is “indicative of a lot of the really interesting work going on in biotechnology right now.” Wallace and his colleagues are themselves experimenting with bioreactors and have had some success in getting microbes to yield hydrogen from things like moldy bread or the lignin in paper industry waste.

But while some microbes help produce hydrogen, others are the scourge of these projects, as they can eat up stored hydrogen or consume the gas in natural wells, says Jon Gluyas, a geologist at Durham University. “We’re trying to keep bacteria away from our hydrogen because they love feasting on it,” he explains.

And he has another quibble. He argues that “gold hydrogen” is different

The Quest to Save the Most Precious Voices on Earth

“My whole world is the human voice,” says Harry Yeff. And he isn’t just referring to his previous life as a champion beatboxer (alias Reeps One). Yeff is also a digital artist, and he has traveled the world meeting experts and artists who share his obsession. He’s spent the past five years collecting, he explains, the most precious voices on Earth.

The motivation for his project is a simple fact: Every day, voices that could be preserved go extinct—whether that be the call of a critically endangered bird or a digital voice note lost in a phone update. That’s why Yeff and his collaborator Trung Bao created Voice Gems: a project that uses AI to shape iconic and endangered voices into digital gemstones and physical sculptures. These AI-generated gems are not just a random visualization: A voice with a lower resonance will take on a deep blueish quality; a